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Abstract
The use of ultra-thin, i.e. monolayer, films plays an important role in the
emerging field of nano-fluidics. Since the dynamics of such films is governed by
the interplay between substrate–fluid and fluid–fluid interactions, the transport
of matter in nanoscale devices may eventually be efficiently controlled by
substrate engineering. For such films, the dynamics is expected to be captured
by two-dimensional lattice-gas models with interacting particles. Using a
lattice-gas model and the non-linear diffusion equation derived from the
microscopic dynamics in the continuum limit, we study two problems of
relevance in the context of nano-fluidics. The first one is the case in which
along the spreading direction of a monolayer a mesoscopic-sized obstacle is
present, with a particular focus on the relaxation of the fluid density profile
upon encountering and passing the obstacle. The second one is the mixing of
two monolayers of different particle species which spread side by side following
the merger of two chemical lanes, here defined as domains of high affinity for
fluid adsorption surrounded by domains of low affinity for fluid adsorption.

1. Introduction

There are substantial efforts to miniaturize chemical processes by using microfluidic systems.
The ‘lab on a chip concept’ integrates a great variety of chemical and physical processes into
a single device in a similar way as an integrated circuit incorporates many electronic devices
into a single chip [1]. These microfluidic devices not only allow for cheap mass production but
they can operate with much smaller quantities of reactants and reaction products than standard
laboratory equipment. This is particularly important for solutions containing rare and expensive
substances, such as certain biological materials, and for toxic or explosive components [2].
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Even though most microfluidic devices available today have micron sized channels, further
miniaturization is leading towards the nanoscale [2, 3]. Besides meeting technical challenges,
new theoretical concepts are needed to understand the basic physical processes underlying this
new technology [4–6]. Whereas the ultimate limits for miniaturization of electronic devices
are set by quantum fluctuations, in a chemical chip these limits are determined by thermal
fluctuations and can be explored by methods of classical statistical mechanics.

At the sub-micron thickness scale, recent experiments of liquid spreading on atomically
smooth surfaces [7–9], performed with volumes of the order of nanolitres, have clearly
shown by means of dynamic ellipsometry or x-ray reflectivity measurements that precursor
films with molecular thickness and macroscopic extent advance in front of the macroscopic
liquid wedge of the spreading drop. (Thin, i.e., of the order of 100 nm, precursor films
spreading ahead of the macroscopic droplet have also been observed experimentally [10].)
The occurrence of molecularly thin precursor films with a similar spreading dynamics has
also been evidenced very recently for immiscible metal systems in three regimes: solid drops
with a solid film, solid drops with a liquid film, and liquid drops with a liquid film [11, 12].
Theoretical work (see [13–16] and references therein) combined with an impressive number
of molecular dynamics (MD) and Monte Carlo (MC) simulations (see [17] and references
therein) addressed the mechanisms behind the extraction and the experimentally observed
t1/2 asymptotic time dependence of the linear extent of the precursor films on chemically
homogeneous substrates [7, 13, 15, 18]. This led to a good understanding of the spreading
dynamics and of the intrinsic morphology of the films. Based on these results, more
complicated issues can be addressed such as, e.g., the spreading behaviour of monolayers
exposed to chemically patterned substrates [19, 20], or the question of mixing of different
fluids at the nano-scale that we shall present below.

The organization of the paper is as follows. In section 2 we briefly present the lattice gas
model of interacting particles and discuss the rules defining the microscopic dynamics and
the nonlinear diffusion equation derived from it in the continuum limit. Section 3 is devoted
to a qualitative discussion of the results obtained for the case of monolayer spreading in the
presence of mesoscopic obstacles, with a particular focus on the relaxation of the density
profile upon encountering and passing the obstacle. In section 4 we discuss the mixing of two
species during spreading of monolayers following the merger of two chemical lanes, and we
conclude with a brief summary of the results in section 5.

2. Fluid monolayers on homogeneous substrates

Recently, we have studied the structure of a monolayer which is extracted from a reservoir [18]
and spreads on a flat, chemically homogeneous substrate, by using a lattice gas model of
interacting particles as proposed in [14, 15]. Since we shall use this model as a starting point
for our present study, for clarity and further reference we briefly describe the defining rules
of the model and the non-linear diffusion equation obtained from the microscopic dynamics
within the continuum limit. A thorough analysis of this model is presented in [18].

(a) We choose a homogeneous substrate such that the spreading occurs in the x–y plane.
The half-plane x < 0 is occupied by a reservoir of particles at fixed chemical potential which
maintains at its contact line with the substrate—positioned at the line x = 0—an average
density C0 (defined as the number of particles per unit length in the transversal y direction).
At time t = 0, the half-plane x > 0 is empty. There is no imposed flow of particles from the
reservoir pushing the extracting film.

(b) The substrate–fluid interaction is modelled as a periodic potential forming a lattice
of potential wells with coordination number z (z = 4 for a square lattice) and lattice
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constant a. The particle motion proceeds via activated jumps between nearest-neighbour
wells; evaporation from the substrate is not allowed. The activation barrier UA determines the
jumping rate � = ν0 exp[−UA/kBT ], where ν0 is an attempt frequency defining the time unit,
kB is the Boltzmann constant, and T is the temperature.

(c) The pair interaction between fluid particles at distance r is taken to be hard-core
repulsive at short range, preventing double occupancy of the wells, and attractive at long
range, −U0/r6 for r � 1, resembling a Lennard-Jones type interaction potential. Here and
in the following all distances are measured in units of the lattice constant a and therefore are
dimensionless. The selection of the nearest-neighbour well into which a particle attempts to
jump, i.e., the probability p(r → r′; t) that a jump from location r will be directed toward
the location r′, is biased by the fluid–fluid energy landscape and is given by

p(r → r′; t) = exp
{

β

2 [Ũ(r; t) − Ũ(r′; t)]
}

Z(r; t)
, (1)

where Z(r; t) = ∑
r′,|r′−r|=1 exp{ β

2 [Ũ(r; t) − Ũ(r′; t)]} is the normalization constant and
1/β = kBT ,

Ũ(r; t) = −U0

∑

r′,0<|r′−r|�3

η(r′; t)

|r − r′|6 , (2)

and η(r′; t) ∈ {0, 1} is the occupation number of the well at r′ at the time t . The summation
in equation (2) has been restricted to three lattice units for computational convenience. This
corresponds to the cut-off generally used in molecular dynamics simulations for algebraically
decaying Lennard-Jones pair potentials. The rates

ωr→r′ ;t = �p(r → r′; t) (3)

for the transitions from r to neighbouring sites r′ satisfy
∑

r′,|r′−r|=1

ωr→r′;t ≡ �. (4)

Thus for any given particle at any location the total rate of leaving a potential well is determined
only by the fluid–solid interaction characterized by UA, is time independent, and equals �.

Neglecting all spatial and temporal correlations, i.e., assuming that averages of products
of occupation numbers η(r; t) are equal to the corresponding products of averaged occupation
numbersρ(r; t) = 〈η(r; t)〉, where 〈· · ·〉 denotes the average with respect to the corresponding
probability distribution P({η(r; t)}) of a configuration {η(r; t)}, one can formulate a mean-
field master equation for the local occupational probability,i.e., the number density ρ(r; t) [18].
In the continuum limit of space and time (�t → 0, a → 0, �−1 → 0, D0 = �a2/4 finite)
for the master equation, by taking Taylor expansions for p(r → r′) and ρ(r′; t) around r
and keeping terms up to second-order spatial derivatives of the density ρ(r; t) [18, 21], one
obtains the following nonlinear and nonlocal equation for ρ(r; t) [22, 23]:

∂tρ = D0∇ [∇ρ + βρ(1 − ρ)∇U ] + O(a2) (5)

where

U(r; t) ≡ 〈Ũ (r; t)〉 = −U0

∑

r′′,0<|r′′−r|�3

ρ(r′′; t)

|r′′ − r|6 (6)

is replacing Ũ(r; t) in the definition (1) for p(r → r′).
Being nonlinear and, due to the term involving the interaction potential U(r; t), nonlocal,

equation (5) cannot be solved analytically and in most of the cases even the computation of a
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numerical solution is a difficult task. However, assuming that the density ρ(r; t) is a slowly
varying function of the spatial coordinates the potential U(r; t) may be expanded as

U(r; t) = −U0

∑

r′,0<|r′−r|�3

ρ(r′; t)

|r′ − r|6

� −U0ρ(r; t)
∑

r′,0<|r′−r|�3

1

|r′ − r|6 + O(a2), (7)

which leads to the local equation

∂tρ = D0∇{[1 − gW0ρ(1 − ρ)] ∇ρ} + O(a2), (8)

where W0 = βU0, and g = ∑
1�|r|�rc

|r|−6 is a geometrical factor depending on the lattice
type (e.g., square, triangular, etc) and on the cut-off range of the potential. For the present case
of a square lattice and a cut-off at rc = 3 one has g � 4.64.

Rescaling time as t → τ = D0t and defining an effective diffusion coefficient,

De(ρ) = 1 − gW0ρ(1 − ρ), (9)

equation (8) may be written in the usual form of a diffusion equation:

∂τ ρ = ∇ [De(ρ)∇ρ] + O(a2). (10)

The functional form of De(ρ) (equation (9)) implies that for W0 > 4/g there will be values ρi

of the density for which De(ρi ) < 0. For parameters such that W0 < 4/g, equation (10) is a
proper diffusion equation (though non-linear), while for W0 > 4/g instabilities are expected
in the range of densities for which De(ρi ) < 0, i.e., for ρi ∈ (ρ−

α , ρ+
α) where

ρ±
α = 1

2

(

1 ±
√

1 − 4

gW0

)

. (11)

It is known [22, 24–26] that these instabilities lead to discontinuities in the density profile
(‘shocks’), i.e., they correspond to the formation of sharp interfaces. For the model defined by
rules (a)–(d), the value for the threshold interaction strength for which such interfaces emerge
is predicted by the continuum theory as W (t)

0 = 4/g � 0.86, which is significantly smaller
than the lower bound estimate W (t)

0 > 1 from KMC simulations. We attribute this to the
mean-field character of the derivation of the continuum equation. Therefore it is necessary
to include particle–particle correlations in the mean-field description. Since the dynamics is
possible only by jumps into empty sites, one can argue that for z = 4 the summation in g should
include at most three contributions from nearest neighbour sites. This leads to g � 3.64 and
an estimate for the threshold interaction W (t)

0 � 1.1, in good agreement with the KMC results.
For the rest of the analysis we shall use this corrected value of g. Additional support for this
corrected value is provided by the analysis of the density profiles [18].

The constraint, that the reservoir keeps the mean density at x = 0 at a fixed value C0,
implies the boundary condition

ρ(x = 0, y; t) = C0. (12)

Depending on the particular system under study, additional boundary conditions may have to
be satisfied. For example, for the case studied in [18], in the absence of formation of interfaces,
i.e., for interactions W0 < W (t)

0 and for large times, the density on the advancing edge X (t)
could be considered as fixed and equal to C1,

ρ(x = X (t), y; t) = C1, (13)

where C1 = 0.11 as inferred from the kinetic Monte Carlo (KMC) simulations. (This boundary
condition (equation (13)) naturally occurred also in the theory of Burlatsky et al [15].) For
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Figure 1. Asymptotic scaling solution ρ(x, t) = C̃(λ) for W0 = 1.0 (regular solution) and (see
the inset) W0 = 1.4 (shock solution) with λ = x/

√
D0t . The theoretical results are obtained from

equation (10) (solid lines). The KMC results (open circles) correspond to the time t = 2 × 106

(in units of ν−1
0 ) which is close to the asymptotic limit (see [18]). λs denotes the position of the

discontinuity as obtained by analytical theory [18].

that system, the absence of boundaries along the y-direction and the y-independence of the
boundary conditions at x = 0 and x = X (t) leads to an effectively one-dimensional problem
and to a scaling solution ρ(x, t) = C̃(λ = x/

√
t). The analysis of equation (10) depends

on whether W0 < W (t)
0 or W0 > W (t)

0 . As shown in [18], in both cases the solutions are in
excellent agreement with those obtained from KMC simulations; typical results are shown in
figure 1. While for the liquid-on-solid systems mentioned in the introduction these intrinsic
density profiles have not been measured yet, data of such density profiles are available for the
immiscible metal systems studied in [11, 12] and they are at least in good qualitative agreement
with the theoretical ones. Since the present model appears to provide a simple but realistic
description of a fluid monolayer spreading on a homogeneous substrate, it is natural to use it
as a starting point to address more complex problems, such as the spreading of monolayers on
designed chemically heterogeneous substrates, or the mixing of monolayers.

3. Diffusive spreading around mesoscopic obstacles

In order to apply the model described in section 2 to study the spreading of a monolayer around
a mesoscopic-size obstacle, we add to rules (a)–(d) in section 2 the following ones.

(e) The obstacle is taken to be a square-shaped domain D of side length h centred at
(x = d � h/2, y = 0) (see also figure 2(a)). This domain is composed of sites with very
low affinity for the fluid particles. The activation barrier UD for jumps from sites outside D
to those inside D is taken to be much larger than UA, such that the boundary ∂D of D acts
effectively as a hard wall.

(f) A sink reservoir occupies the region x � L, where L 
 1 and L 
 d + h, and
maintains at its contact line with the substrate, positioned at the line x = L, an average density
(number of particles per unit length in the transversal y direction) C1 = 0.

Under these assumptions, the density profile ρ(x, y, t) as the solution of equation (10)
fulfils the initial condition

ρ(x, y, 0) = C0�(−x), (14)
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Figure 2. (a) Schematic drawing of a substrate with high affinity for fluid adsorption patterned
with a square domain D (length h, centred at (x = d � h/2, y = 0)) of very low affinity for fluid
adsorption obstructing the spreading. The substrate is in contact with a reservoir of particles located
at x � 0 from which a monolayer is extracted and spreads along the x direction. A sink of particles
is located at x = L . There are periodic boundary conditions in the y-direction. (b), (c) Density
profiles in the vicinity of the obstacle from numerical integration of equation (10) with initial and
boundary conditions given by equations (14)–(16), respectively, for a spreading monolayer whose
edge just encounters an obstacle (τ = 200) (b) and has just passed the obstacle (τ = 2000) (c).
The parameters used in the simulations are C0 = 1.0, W0 = 0.9, d = 20, h = 10, Lx = 200,
L y = 30. The right box shows the colour coding for the density.

where �(x) denotes the Heaviside step function, and the boundary conditions

ρ(0, y, t) = C0,

ρ(L, y, t) = 0,

jn |∂D = 0.

(15)

The current j is given by (see equation (10))

j = −De(ρ)∇ρ. (16)

Note that in a numerical study the system necessarily has a finite size L y along the y
direction. We will use periodic boundary conditions and sizes L y 
 1 such that h/L y < 1
but not negligible (mesoscopic-size obstacle) and L y − h 
 rc, such that the boundary ∂D
of the obstacle is sufficiently far away from the edge of the simulation box to avoid finite-size
effects.

In figures 2(b) and (c) we present typical results for the density profiles in the vicinity of
the obstacle obtained from the numerical integration of equation (10) with initial and boundary
conditions given by equations (14)–(16), respectively, for a spreading monolayer whose edge
just encounters an obstacle (τ = 200) (b) and has just passed the obstacle (τ = 2000)
(c). Several conclusions can be drawn from visually inspecting figures 2(b) and (c). Upon
approaching the obstacle, the boundary condition of zero normal current at the boundary of
the obstacle (reflecting wall) leads to an increase in the density in a region at the front of
the spreading monolayer, as shown by the forward bending of the iso-density lines (see, e.g.,
the yellow band in figure 2(b)). Upon passing the front edge of the obstacle, the iso-density
lines become straight, and once they reach the end of the obstructed region they bend again,
this time backwards. This indicates that upon passing the obstacle the spreading tends to
proceed faster in the regions far from the obstacle, while at the obstacle the iso-density lines
are pinned until they cover the whole edge on the back of the obstacle (see, e.g., the light blue



Diffusive spreading and mixing of fluid monolayers S4195

band neighbouring the green region in figure 2(c)). Once this is realized, the iso-density line
detaches from the back edge of the obstacle, and the bending slowly relaxes (see, e.g., the
boundary between the light and dark blue regions in the top region of figure 2(c)), while the
spreading continues; far away from the obstacle, the iso-density lines become again straight.

We end this section by noting that the maximum linear extent of the region where the
iso-density lines are deformed, as well as the survival time of these deformations, can be used
as quantitative measures to describe the relaxation of the density perturbations induced by
the obstacle as a function of the inter-particle attractive interactions, as well as of the scaled
size h/L y of the mesoscopic obstacle (assuming that this is the most relevant geometrical
parameter). The results of this analysis will be the subject of a forthcoming paper.

4. Diffusive mixing of two fluid monolayers composed of different species

The model described in section 2 can be used to study the mixing of two spreading fluid
monolayers composed of different species A and B, if one assumes that the two species
interact with the substrate in such a way that the same lattice structure of potential wells,
eventually with different depths (i.e., different escape rates �i ), can accommodate both types
of species. Assuming a square lattice of lattice constant a and assuming the on-site hard
core repulsion between any two particles such that double occupancy remains forbidden, the
equations satisfied by the densities ρ j(x, t), where j ∈ {A, B}, are obtained from equation (5)
by replacing U with Uii +Ui j , where Uii is the potential due to same-species interactions while
Ui j , j �= i , is the potential due to interactions between different species, D0 with Di = �i a2/4,
and changing the single-occupancy term from 1 − ρ(r, t) to 1 − ρA(r, t) − ρB(r, t):

∂tρi = Di∇
[∇ρi + βρi(1 − ρi − ρ j )∇(Uii + Ui j)

]
, i, j ∈ {A, B}, j �= i. (17)

We note here that there is no summation over the same indices, and we also note that in the
case of identical species, i.e., DA = DB and UAA = UBB = UAB, by adding equation (17) for
i = A and the corresponding one for i = B one finds that as expected the density ρ = ρA + ρB

satisfies equation (5). Assuming that the long-ranged parts of the pair interactions A–A, B–B,
and A–B are of the same Lennard-Jones form (see section 2) only with different strengths
U (i j)

0 , i, j ∈ {A, B}, one can repeat the same argument as that following equation (5) to reduce
equation (17) to a local one,

∂tρi = Di∇
[∇ρi − gρi(1 − ρi − ρ j)(Wii ∇ρi + Wi j∇ρ j )

]
, i, j ∈ {A, B}, j �= i,

(18)

where the notation Wi j = βU (i j)
0 has been introduced.

We consider a T-junction patterned onto a planar, rectangular substrate of size Lx ×2L y as
described below (see also figure 3(a)). The spreading monolayers are extracted from reservoirs
of particles A and B, respectively, which maintain constant line densities CA,B

0 at the lines
C1 = (y = −L y, 0 � x � d) and C2 = (y = L y, 0 � x � d), respectively. The
domains D1 = {(x, y)|y < −h/2 ∧ x > d} and D2 = {(x, y)|y > h/2 ∧ x > d} represent
sites with very low affinity for the fluid particles of either type, such that similarly to the
situation in section 3 the boundaries of these domains effectively act as hard walls, confining
the spreading onto the two lanes forming the inverted T-junction. Finally, we assume that at
the foot x = Lx , |y| � h/2 of the T-junction there is a sink for particles of both species. Under
these assumptions, the functions ρA,B(x, y, t) as solutions of equation (18) fulfil the initial
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Figure 3. (a) Schematic drawing of a T-shaped pattern with high affinity for a fluid in contact with
two reservoirs for particles of species A and B, located at y = −L y and y = L y , respectively. The
two monolayers spread initially in opposite directions along the y axis, and upon meeting they start
to mix and to invade the empty stripe of width h located at x > d, |y| � h/2. The rectangular
domains D1 and D2 consist of sites with very low affinity for fluid adsorption. A sink of particles
is located at x = Lx . (b), (c) Results for the mixing parameter cA(r, τ ) near the T-junction from
numerical integration of equation (18) with initial and boundary conditions given by equations (20)
and (21) for the cases of attractive inter-species interaction WAB = 0.6 (b) and repulsive inter-
species interaction WAB = −0.6 (c), respectively, at τ = 103, for WAA = WBB = 0.7, and
CA

0 = CB
0 = 1.0. (d), (e) Results for the density ρA(r, τ ) of A particles for attractive inter-species

interaction WAB = 0.6 (d) and repulsive inter-species interaction WAB = −0.6 (e). The other
parameters are the same as in (b) and (c). Note that there is no colour-coding for ρA(r, τ ).

condition

ρA(x, y, 0) = CA
0 , (x, y) ∈ C1,

ρB(x, y, 0) = CB
0 , (x, y) ∈ C2,

ρA,B(x, y, 0) = 0, otherwise,

(19)

and the boundary conditions

ρA(x, y, t)|C1 = CA
0 ,

ρB(x, y, t)|C2 = CB
0 ,

ρA(Lx , y, t) = ρB(Lx , y, t) = 0,

jA,B
n |∂D1,2 = 0,

(20)

where the current jA (jB is obtained by exchanging the labels A ↔ B) is now given by (see
equation (18))

jA = ∇ρA − gρA(1 − ρA − ρB)(WAA∇ρA + WAB∇ρB). (21)

In the following we focus on the effect of the A–B interaction on the dynamics of mixing
of otherwise identical monolayers, i.e., we choose WAA = WBB, DA = DB, and CA

0 = CB
0 ; the

results discussed in the following correspond to the particular choice CA
0 = CB

0 = 1, while the
parameter DA is absorbed into the variable τ = DAt . The geometrical parameters are fixed to
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Lx = 500, L y = 20, and d = h = 20. The mixing will be characterized by the ratio

cA(r, τ ) = ρA(r, τ )

ρA(r, τ ) + ρB(r, τ )
(22)

(with the convention cA = 0 if ρA + ρB = 0), which is close to unity in A-rich regions, close
to zero in B-rich regions, and close to one-half in regions where mixing is accomplished (i.e.,
ρA � ρB �= 0).

In figures 3(b) and (c) we present typical results for cA(r, τ ) from numerical integration
of the coupled set of equations given by equation (18) with the initial and boundary conditions
equations (20) and (21) for the case of attractive interactions WAA = WBB = 0.7 and attractive
inter-species interaction WAB = 0.6 (b), respectively repulsive inter-species interaction
WAB = −0.6 (c). From these figures it is clear that within the stripe forming the leg of
the T-junction there is almost perfect mixing.

Surprisingly, at first glance the result seems to be almost independent of the sign of the
A–B interaction, and there is only a weak dependence on the strength WAB of this interaction,
except for the extension of the A-rich and B-rich regions near the corners of the T-junction.
However, this behaviour can be easily rationalized in view of the fact that, as shown in [18],
the structure and dynamics of the spreading of a one-component monolayer of particles with
inter-particle attraction WAA = 0.7 is also well described by the ‘effective boundary force’
theory of Burlatsky et al [15], which disregards interactions within the bulk of the monolayer.
The reason for this is that the density in the spreading monolayer is relatively low, except for the
region near the reservoir, and thus the system is too dilute to be influenced by the inter-particle
attraction. Therefore, in the initial stages of spreading and mixing, the stripe is invaded by low
density phases of A and B which mix independently of their mutual interaction. This scenario
is well supported by the comparative analysis of the corresponding density profiles ρA(r, τ )

in the cases WAB = 0.6 and WAB = −0.6, respectively, shown in figures 3(d) and (e): almost
everywhere in the stripe the density of A particles is low, in the range of 0–0.25, and thus the
mixture behaves as a dilute, non-interacting two-dimensional gas. Finally, we note a weak
dependence of the extension of the A-rich and B-rich regions near the corners of the T-junction
on the sign of the WAB interaction (compare figures 3(b) and (c), respectively (d) and (e)).

The above scenario holds for all values WAA = WBB � 0.9 and |WAB| � WAA that
we have tested, and thus the (tentative) conclusion is that the symmetric T-geometry would
ensure practically perfect mixing (but without any possibility of controlling the spatial extent
or the spatial distribution of mixing) for two-component monolayers with a similarity of
the interactions between like species. However, further calculations should be carried out
before definite conclusions can be drawn concerning this issue. For example, for the case
WAA, WBB > 1.1 we expect sharp interfaces to emerge in each of the two spreading monolayers,
which might eliminate the ‘mixing through the low density front’ mechanism discussed above.
Simulations for these ranges of values for the inter-particle interactions turned out to be
extremely time consuming, and work is still in progress to elucidate this point.

5. Summary

A lattice gas model of interacting particles and the corresponding nonlinear diffusion equation
derived from its microscopic dynamics in the continuum limit provide a simple but realistic
description of fluid monolayer spreading on a homogeneous substrate. Based on previous
results for spreading on a homogeneous substrate, here we have extended this model to address
two more complex problems: the spreading of monolayers around obstacles (section 3) and
the mixing of monolayers (section 4). These are simple examples of spreading on chemically
designed substrates.
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For the case of monolayer spreading in the presence of a mesoscopic obstacle, the results
obtained from the numerical integration of the nonlinear diffusion equation (equation (10))
with initial and boundary conditions given by equations (14)–(16) show that the iso-density
lines are bent and pinned by the obstacle during the spreading of the monolayer around it. For
a fixed geometry, a fixed density of the reservoir, and fixed substrate–fluid and inter-particle
interactions the spatial and temporal extent of this bending in front of and behind the obstacle
can be used as measures for the relaxation of the density profile upon passing around the
obstacle.

As an example for the mixing of two species in the course of spreading of two monolayers
at the merger of two chemical lanes, we have discussed the case of a T-junction geometry.
We have focused on the effect of the A–B inter-species interaction on the dynamics of mixing
of otherwise identical monolayers. Surprisingly, so far our results lead to the conclusion that
the symmetric T-geometry together with the similarity of the same-species interaction ensures
practically perfect mixing (but without any possibility of controlling the spatial extent or the
spatial distribution of mixing) for two monolayers of different species, independently of the
sign or the strength of the A–B interaction. Only the extension of the A-rich and B-rich regions
near the corners of the T-junction exhibits differences. This behaviour reflects the fact that in
the initial stages of spreading and mixing the stripe is invaded by low density phases of A and
B, which mix independently of the inter-species interaction; the resulting mixture is a dilute,
quasi-non-interacting two-dimensional gas. Because this complete mixing has occurred at
early stages, when repulsion does not play a role, and since the continuum equation does not
contain any noise terms, demixing or segregation is not observed in the present calculations,
although it is expected to occur for strongly repulsive A–B interactions.
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